Theory of machinery

Chapter three

Velocity analysis

By
Laith Batarseh

Velocity analysis

Vector algebra

- If we assume that the dimension Θ is represented by a unit vector U_{θ}, then the derivative of the unit vector (\dot{U}_{θ}) can be found as:-

$$
\dot{U}_{\theta}=\frac{d U_{\theta}}{d t}=\lim _{\Delta t \rightarrow 0} \frac{U_{\theta+\Delta \theta}-U_{\theta}}{\Delta t}
$$

Assume a position vector $\mathbf{r}: \mathbf{r}=r U_{\theta}$
Take derivative with respect to time: $\dot{\mathbf{r}}=(r)(\omega) \dot{U}_{\theta}+\dot{r} U_{\theta}$
But $\dot{r}=0$ and so:

$$
\dot{\mathbf{r}}=(r)(\omega) \dot{U}_{\theta}
$$

Velocity analysis

VECTOR ALGEBRA

-According to the previous derivation, if the vector $\mathbf{d U}_{\boldsymbol{\theta}}$ represent a link then its derivative is found as :

$$
\frac{d\left(d U_{\theta}\right)}{d t}=(d)(\omega) \dot{U}_{\theta}
$$

$$
\begin{aligned}
& \text { Note that:- assume } U_{\theta 1}=\cos \left(\theta_{1}\right) i+\sin \left(\theta_{1}\right) \mathrm{j} \text { and } \mathrm{U}_{\theta 2}=\cos \left(\theta_{2}\right) \mathrm{i}+\sin \left(\theta_{2}\right) \mathrm{j}:- \\
& \dot{U_{\theta 1}} \bullet U_{\theta 1}=0 \\
& U_{\theta 1} \bullet \dot{U}_{\theta 2}=\sin \left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

Velocity analysis

4-BAR MECHANISM

LOOP CLOSURE EQUATION

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}=d_{1} U_{\theta 1}+d_{4} U_{\theta 4}
$$

Derivative

$$
d_{2} \omega_{2} \dot{U}_{\theta 2}+d_{3} \omega_{3} \dot{U}_{\theta 3}=d_{4} \omega_{4} \dot{U}_{\theta 4}
$$

Dot product both sides by $\mathbf{U}_{\theta 3}$ to eliminate $\boldsymbol{\omega}_{\mathbf{3}}$

$$
d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)+0=d_{4} \omega_{4} \sin \left(\theta_{3}-\theta_{4}\right)
$$

Solve for $\omega_{4}:-\quad \omega_{4}=\frac{d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)}{d_{4} \sin \left(\theta_{3}-\theta_{4}\right)}$

Velocity analysis

4-BAR MECHANISM

FIND ω_{3}

to find ω_{3}, dot product both sides of derivative equation by $\mathbf{U}_{\mathbf{\theta 4}}$ to eliminate $\boldsymbol{\omega}_{\mathbf{4}}$:

$$
d_{2} \omega_{2} \sin \left(\theta_{4}-\theta_{2}\right)+d_{3} \omega_{3} \sin \left(\theta_{4}-\theta_{3}\right)=0
$$

solve this equation for ω_{3} :-

$$
\omega_{3}=-\frac{d_{2} \omega_{2} \sin \left(\theta_{4}-\theta_{2}\right)}{d_{3} \sin \left(\theta_{4}-\theta_{3}\right)}
$$

Velocity analysis

SLIDER CRANK MECHANISM

LOOP CLOSURE EQUATION

$$
d_{2} U_{\theta 2}+d_{3} U_{\theta 3}+a U_{\alpha+90}=s U_{\alpha}
$$

Derivative

$$
d_{2} \omega_{2} \dot{U_{\theta 2}}+d_{3} \omega_{3} \dot{U_{\theta 3}}=\dot{S} U_{\alpha}
$$

Dot product both sides by $\mathbf{U}_{\theta 3}$ to eliminate $\boldsymbol{\omega}_{\mathbf{3}}$

$$
\begin{gathered}
\qquad d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)+0=\dot{S} \cos \left(\theta_{3}-\alpha\right) \\
\text { Solve for } \dot{S}:-\quad \dot{S}=\frac{d_{2} \omega_{2} \sin \left(\theta_{3}-\theta_{2}\right)}{\cos \left(\theta_{3}-\alpha\right)}
\end{gathered}
$$

Velocity analysis

SLIDER CRANK MECHANISM

FIND ω_{3}

to find ω_{3}, dot product both sides of derivative equation by $\mathbf{U '}_{\alpha}$ to eliminate S^{\prime} :

$$
d_{2} \omega_{2} \cos \left(\theta_{2}-\alpha\right)+d_{3} \omega_{3} \cos \left(\theta_{3}-\alpha\right)=0
$$

solve this equation for $\omega_{3}:-\quad \omega_{3}=-\frac{d_{2} \omega_{2} \cos \left(\theta_{2}-\alpha\right)}{d_{3} \cos \left(\theta_{3}-\alpha\right)}$

Velocity analysis

$>$ Any two bodies in plane motion has a common point at which bothen bodies has the same velocity. This point is called instant center of velocity
>a normal axis through this point represent an axis of rotation common to the two bodies

$>$ In a mechanism with n links C (№ of instant centers) is found as

$$
C=\frac{n(n-1)}{2}
$$

Kennedy's rule : any three bodies have three instant centers of velocity that lie on the same straight line

Velocity analysis

I.C of four bar

$$
C=\frac{n(n-1)}{2}=\frac{4(4-1)}{2}=6
$$

Velocity analysis

I .C of slider crank

$$
C=\frac{n(n-1)}{2}=\frac{4(4-1)}{2}=6
$$

Velocity analysis

Speed ratio

speed ratio is the ratio between motions of rotating links with other rotating or translational links

There are two common cases of finding the speed ratio:

Between two rotating links have a direct contact

Between to links have a common link acts as normal to the two links

Velocity analysis

SPEED RATIO

-Draw line of centers from the rotating axes $\left(\mathrm{O}_{2}-\mathrm{O}_{4}\right)$
-Draw extension line for link number 3 until it intersect the line of center at point k.
-The speed ratio: will be found using the following equation

$$
\frac{\omega_{4}}{\omega_{2}}=\frac{O_{2} k}{O_{4} k}
$$

Where:-

$\cdot \boldsymbol{O}_{\mathbf{2}} \boldsymbol{k}$ is the straight distance measured between the points $\boldsymbol{O}_{\mathbf{2}}$ and \boldsymbol{k}.
${ }^{-\boldsymbol{O}_{\mathbf{4}} \boldsymbol{k}}$ is the straight distance measured between the points $\boldsymbol{O}_{\mathbf{4}}$ and \boldsymbol{k}.

Velocity analysis

SPEED RATIO

First case

-Draw line of centers from the rotating axes $\left(\mathrm{O}_{2}-\mathrm{O}_{3}\right)$
-Draw a tangent from the contact point
-Draw a line start from the tangency point perpendicular to the tangent line and intersect the line of centers at a certain point. Call this point \mathbf{k}.
-The speed ratio: will be found using the following equation

$$
\frac{\omega_{3}}{\omega_{2}}=\frac{O_{2} k}{O_{3} k}
$$

Where:
${ }^{-\boldsymbol{O}_{\mathbf{2}} \boldsymbol{k}}$ is the straight distance measured between the points $\boldsymbol{O}_{\mathbf{2}}$ and \boldsymbol{k}.
${ }^{\cdot} \boldsymbol{O}_{\mathbf{3}} \boldsymbol{k}$ is the straight distance measured between the points $\boldsymbol{O}_{\mathbf{3}}$ and \boldsymbol{k}.

Velocity analysis

4-BAR MECHANISM

Special cases

$>$ In locking positions speed is too much before $\theta_{3}-\theta_{4}$ but it becomes zero after that and motion stops

Velocity analysis

4-BAR MECHANISM

Special cases

Limit position
$\theta_{2}=\theta_{3}+\pi$
$>$ In limit positions speed becomes zero when $\theta 3=\theta 2$

